Rational Catalan Combinatorics: The Associahedron

نویسندگان

  • Drew Armstrong
  • Brendon Rhoades
  • Nathan Williams
  • N. Williams
چکیده

Each positive rational number x > 0 can be written uniquely as x = a/(b − a) for coprime positive integers 0 < a < b. We will identify x with the pair (a, b). In this extended abstract we use rational Dyck paths to define for each positive rational x > 0 a simplicial complex Ass(x) = Ass(a, b) called the rational associahedron. It is a pure simplicial complex of dimension a− 2, and its maximal faces are counted by the rational Catalan number Cat(x) = Cat(a, b) := (a+ b− 1)! a! b! . The cases (a, b) = (n, n + 1) and (a, b) = (n, kn + 1) recover the classical associahedron and its Fuss-Catalan generalization studied by Athanasiadis-Tzanaki and Fomin-Reading. We prove that Ass(a, b) is shellable and give nice product formulas for its h-vector (the rational Narayana numbers) and f -vector (the rational Kirkman numbers). We define Ass(a, b) . Résumé. Tout nombre rationnel positif x > 0 peut être exprimé de façon unique par x = a/(b− a) avec 0 < a < b deux entiers positifs premiers entre eux. Nous identifierons x avec la paire (a, b). Dans cet article, nous utilisons les chemins de Dyck rationnels pour définir pour tout rationnel positif x > 0 un complexe simplicial Ass(x) = Ass(a, b) que nous appelons l’associahedron rationnel. Il s’agit d’un complexe simplicial pur de dimension a− 2, et ses faces maximales sont comptées par le nombre rationnel de Catalan Cat(x) = Cat(a, b) := (a+ b− 1)! a! b! . Les cas (a, b) = (n, n+1) et (a, b) = (n, kn+1) permettent de retrouver l’associhedron classique et sa généralisation Fuss-Catalan, étudiée par Athanasiadis-Tzanaki et Fomin-Reading. Nous démontrons que Ass(a, b) est shellable et nous donnons des formules de produits simples pour son h-vecteur (les nombres rationnels de Narayana) et son f -vecteur (les nombres rationnels de Kirkman).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometry of ν-Tamari lattices in types A and B

In this extended abstract, we exploit the combinatorics and geometry of triangulations of products of simplices to reinterpret and generalize a number of constructions in Catalan combinatorics. In our framework, the main role of “Catalan objects” is played by (I, J)-trees: bipartite trees associated to a pair (I, J) of finite index sets that stand in simple bijection with lattice paths weakly a...

متن کامل

Rational Associahedra and Noncrossing Partitions

Each positive rational number x > 0 can be written uniquely as x = a/(b− a) for coprime positive integers 0 < a < b. We will identify x with the pair (a, b). In this paper we define for each positive rational x > 0 a simplicial complex Ass(x) = Ass(a, b) called the rational associahedron. It is a pure simplicial complex of dimension a − 2, and its maximal faces are counted by the rational Catal...

متن کامل

Using Spines to Revisit a Construction of the Associahedron

An associahedron is a polytope whose vertices correspond to triangulations of a convex polygon and whose edges correspond to flips between them. C. Hohlweg and C. Lange constructed various realizations of the associahedron, with relevant combinatorial properties in connection to the symmetric group and to the classical permutahedron. We revisit this construction focussing on the spines of the t...

متن کامل

Associahedra via Spines

An associahedron is a polytope whose vertices correspond to triangulations of a convex polygon and whose edges correspond to flips between them. Using labeled polygons, C. Hohlweg and C. Lange constructed various realizations of the associahedron with relevant properties related to the symmetric group and the classical permutahedron. We introduce the spine of a triangulation as its dual tree to...

متن کامل

Lattice Points and Simultaneous Core Partitions

We observe that for a and b relatively prime, the “abacus construction” identifies the set of simultaneous (a, b)-core partitions with lattice points in a rational simplex. Furthermore, many statistics on (a, b)-cores are piecewise polynomial functions on this simplex. We apply these results to rational Catalan combinatorics. Using Ehrhart theory, we reprove Anderson’s theorem [3] that there ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013